
An annual increase in Campylobacter infection in
England and Wales begins in May and reaches a maximum
in early June. This increase occurs in all age groups and is
seen in all geographic areas. Examination of risk factors
that might explain this seasonal increase identifies flies as
a potential source of infection. The observed pattern of
infection is hypothesized to reflect an annual epidemic
caused by direct or indirect contamination of people by
small quantities of infected material carried by flies that
have been in contact with feces. The local pattern of human
illness appears random, while having a defined geographic
and temporal distribution that is a function of the growth
kinetics of one or more fly species. The hypothesis pro-
vides an explanation for the seasonal distribution of
Campylobacter infections seen around the world.

Campylobacter spp. are the most common bacterial
causes of diarrhea in England and Wales (1). The epi-

demiologic features of Campylobacter infection have
proved difficult to discover, and extensive strain typing has
failed to clarify the main transmission routes. Testable
hypotheses must be established to explain available evi-
dence, particularly the reason for the observed seasonality.
Relatively few outbreaks of Campylobacter gastroenteritis
occur (2), and most cases are sporadic. In case-control and
case-case studies of sporadic Campylobacter infections,
most cases remain unexplained by recognized risk factors
(3,4).

The annual increase in Campylobacter infections in
England and Wales begins at approximately day 130 (May
9) and reaches a maximum at approximately day 160 (June
8) (Figure 1). Although this seasonal rise is seen in all ages,
it is more marked in children (5). Cases in towns and cities
across England and Wales show broadly similar seasonal
changes in distribution (Figure 2). The relative geographic
uniformity of the increase seen in May of most years has
the temporal appearance of an annual national epidemic.
Because person-to-person infection within the community
is uncommon, it is likely that the epidemic is caused by a

single main driver for human Campylobacter infection. The
possible seasonal drivers were examined, and only vector
transmission by flies appears to provide a convincing
explanation for the observed seasonal trends (Table).

The seasonal increase in Campylobacter infections in
May and June in England and Wales is hypothesized to
reflect an annual epidemic caused by direct or indirect
exposure of humans to contaminated material carried by
several fly species that have been in contact with human,
bird, or animal feces or contaminated raw foods. Flies have
been shown to carry Campylobacter and can infect both
humans and animals (6–8). Intervention studies have
demonstrated diarrheal disease reduction linked to control
of flies (9–11), and deaths from diarrheal diseases have
been linked to measurements of fly abundance (12). The
local pattern of human Campylobacter infection appears
random, while having a defined geographic and temporal
distribution. This distribution is predicted to be linked to
the growth kinetics of 1 or more fly species and their
access to environmental sources of Campylobacter in
feces or food. The seasonal increase in fly populations
results from rainy weather and an increase in temperature
that causes the development from egg to fly to occur in
days rather than months. Individual flies can lay hundreds
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Figure 1. Distribution of Campylobacter cases per day. When aver-
aged for 1989 to 2002, the epidemic begins at approximately day
130, peaks at approximately day 160, and gradually declines
through the rest of the year.



of eggs, which can result in a large increase in fly numbers
in a short period. Fly numbers fluctuate through the sum-
mer and decline in October, but the decline is less dramat-
ic and defined than the spring increase.

Disease transmission is hypothesized to occur through
small quantities of contaminated material carried on the
feet, proboscis, legs, and body hairs or from material
regurgitated or defecated by flies. The variety, numbers,
virulence and viability of organisms in the contaminated
material will differ, and some contamination will include
Campylobacter while others will not. Contamination will
be distributed over a variety of food types. Contamination
of food by flies could occur at any stage of the food sup-
ply chain, but Campylobacter counts within the contami-
nated material on foods will decrease over time;
consequently, most infection will result from contamina-
tion close to consumption (e.g., in the domestic or catering
environment). Because whether a fly has visited contami-
nated feces is unknown and how a person becomes infect-
ed is uncertain, epidemiologic investigation is difficult. 

A number of synanthropic fly species could be
involved, including houseflies (e.g., Musca spp., Fannia
spp.), blowflies (e.g., Calliphora spp., Lucilia spp.), and
other dung-related flies (e.g., Sarcophaga spp.,
Drosophila spp.) (13). These flies have individual behav-
ioral patterns, ecology, physiology, and temporal and geo-
graphic distributions that will influence the likelihood of
their being in kitchens, on human or animal feces, and on
food. Although Musca domestica is the species most like-
ly to be involved because it is commonly found in houses
and food-processing establishments, larger flies (e.g.,
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Figure 2. Cases of Campylobacter infection in England and Wales
based on the patient specimen date. Figure shows broadly similar
changes in patterns of infection across the country as measured
by laboratory reporting per town or city (cases as a percentage of
the annual total) by day of year. Laboratories were ordered by the
total number of cases reported over the 14-year period (online
Appendix available from http://www.cdc.gov/ncidod/EID/vol11
no03/04-0460_app.htm).



Calliphora spp.) may be able to transmit larger numbers
of Campylobacter. 

Flies contaminated through fecal contact will carry het-
erogeneous mixtures of organisms, including any
pathogens that are present within the feces, and may be
able to cause a variety of human infections, including
infection by different Campylobacter species and types.
This fact partially explains the lack of a clear epidemiolog-
ic picture arising from Campylobacter typing work.
Gastrointestinal disease caused by flies is more likely to
involve pathogens with a low infectious dose (e.g.,
Shigella, Campylobacter, Cryptosporidium, Giardia,
Cyclospora, Escherichia coli O157), and some of these
could have a seasonal component related to flies. Where
high fly populations and poor hygiene conditions prevail,
as in disasters or famines, or where pathogens can grow
within fly-contaminated food, the potential exists for trans-
mitting pathogens with a high infectious dose (e.g., Vibrio
cholerae, Salmonella spp.). The access that flies have to
human and animal feces will influence the degree to which
they are contaminated with different enteric pathogens. 

Contamination of a range of foods by flies will result in
a pattern of infection that will not be amenable to identify-
ing specific vehicles through standard case-control, case-
case, or cohort studies, unless specific objective or
subjective assessments of fly numbers can be obtained. Fly
monitoring will need to be undertaken. An alternative
approach could use estimates of fly population numbers
based on climatic conditions to compare with data on
human Campylobacter infections. This approach has the
advantage of being able to use historical climatic and dis-
ease surveillance data. The broad relationship between
Campylobacter cases and ambient temperature has not
been explained in terms of disease causation. The time
taken for the larvae of M. domestica to develop (13) was
applied to temperature data for England and Wales and has
been used to show a strong relationship between
Campylobacter cases per week and M. domestica larval
development time for 1989 to 1999 (Figure 3). Periods
when Campylobacter cases exceed a 7-day average of 170
cases per day occurred when M. domestica larval develop-
ment time was <3 weeks.

The hypothesis predicts that the Campylobacter infec-
tion rates will be higher in persons living close to animal
production and lower in urban settings because fly num-
bers will be lower. Some evidence from the United
Kingdom (1,14) and Norway (15) supports this hypothesis.
Seasonal changes in Campylobacter incidence that are
seen around the world may result from changes in fly pop-
ulations and flies’ access to human and animal feces. Much
emphasis on foodborne disease reduction has rightly been
on kitchen hygiene, since the low infectious dose of
Campylobacter makes cross-transmission from raw meats

to ready-to-eat foods a substantial risk in domestic and
catering environments. Fly transmission may be the most
important source of infection in kitchen transmission
routes, and establishments that sell ready-to-eat foods may
be sources of Campylobacter, if effective fly control is not
in operation. Flies may also be important in transmitting
Campylobacter in poultry flocks (16) and between other
agricultural animals.

While flies are regarded as important mechanical vec-
tors of diarrheal disease in developing countries, control
has largely concentrated on improving drinking water and
sewage disposal. In the industrialized world, flies are
thought to play a minor role in the transmission of human
diarrheal diseases. Immediately intervening in the trans-
mission of Campylobacter gastroenteritis should be possi-
ble through increased public awareness and more effective
fly control.
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Figure 3. Campylobacter cases by week and Musca domestica lar-
val growth times. Campylobacter cases per day are plotted against
the minimum M. domestica growth times for the 14 days before the
date for weeks from January 1989 to December 1999. The time
taken for M. domestica larvae to develop was based on under-
stood growth temperatures (145 days divided by the number of
degrees above 12°C, up to an optimum of 36°C) (8). The temper-
atures were based on a maximum temperature in 47 temperature
sampling sites across England and Wales in the 2 weeks before
(online Appendix available from http://www.cdc.gov/ncidod/EID/
vol11no03/04-0460_app.htm). 
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Appendix Table. Evidence for seasonal associations between factors linked to human Campylobacter infections or outbreaks 
Risk factor Outbreaks Evidence for factor causing seasonal increase Evidence against factor causing seasonal increase 

Chicken/turkey (1–7) Chicken is the food most commonly contaminated with Campylobacter. 
A substantial portion of infection probably derives from this source (1–
6,8–10). Some evidence shows that Campylobacter contamination of 
chickens is seasonal. 

Chicken is not the vehicle for most sporadic Campylobacter infections 
(8,11,12). Little evidence exists that the seasonal differences in 
Campylobacter in chickens are sufficient to drive the seasonality of 
human disease (13–18). 

Salads and fruit (19–21) Untreated leaf salads and soft fruits might be potential sources of 
human campylobacteriosis (9,19–21) because these raw products are 
eaten without any heat treatment. 

In most of the outbreaks involving salad items, cross-contamination 
from contaminated raw foods was thought to be involved. While 
seasonal import of fresh fruit or vegetables from different countries 
might represent a potential source of infection it would be surprising if 
this manifested itself as an annual nationwide outbreak across the 
whole of England and Wales while remaining refractory to 
epidemiologic investigation. Fly transmission from animal feces may be 
important. 

Cross-contamination from raw 
meats to ready-to-eat foods 

(9) Cross-contamination from raw meats to ready to eat foods within 
kitchens and retail premises probably contributes significantly to 
Campylobacter infection. 

Why cross-contamination should be strongly influenced by the season 
is unclear, unless levels of raw meat contamination change with the 
seasons. 

Unpasteurized or inadequately 
pasteurized milk 

(6,22–33) Unpasteurized or badly pasteurized milk can be a source of 
Campylobacter infection (6,23,26,29,33–36). Milk could cause the 
seasonality if the numbers of Campylobacter in raw milk changed with 
the season and other critical control points in milk production 
(pasteurization) are not tightly maintained. Infections related to 
consumption of unpasteurized milk appear to be seasonal, with a peak 
in May, which suggests seasonal changes in the Campylobacter 
contamination of unpasteurized milk.  

No evidence shows that the seasonality of human disease is largely 
due to unpasteurized milk because this product is not commonly 
consumed. No evidence shows that pasteurization varies substantially 
by season. 

Birds (37,38) Campylobacter is common in birds. Migratory birds result in large 
seasonal changes in the inputs to the environment from bird feces and 
could contribute to human Campylobacter exposure (39). Migratory 
birds could be a seasonally changing driver to human disease (40). 
The main likely exposure route if this were the case would be direct 
contact with contaminated bird feces in the garden, contamination of 
field-grown fruit and vegetables and contamination of source waters for 
drinking. Bird-pecked milk is a recognized route by which 
Campylobacter infection can be acquired (37,38). The contamination is 
thought to result from birds feeding consecutively on cow feces and 
milk in bottles. The infections related to bird-pecked milk appear to be 
seasonal in distribution with a marked increase in May (41). 

Bird-pecked milk is unlikely to be the cause of the worldwide seasonal 
distribution of Campylobacter infections. Fly transmission from bird 
feces, particularly farmed poultry, may be important. Evidence from 
extensive monitoring of ready-to-eat foods sampled at retail businesses 
suggests little evidence of Campylobacter contamination (Little, pers. 
comm.). 

Barbecue (1) Barbecue use might be a contributing factor to the total Campylobacter 
infection because standards of food safety associated with barbecue 
use are likely to be poorer (1,42,43). Case-control studies have found 
associations between barbecue use and sporadic Campylobacter 
infection (44,45). 

Barbecue use on its own is unlikely a big enough, or seasonal enough, 
driver of disease to account for seasonal changes in incidence. 



Risk factor Outbreaks Evidence for factor causing seasonal increase Evidence against factor causing seasonal increase 

Food packaging  The packaging around chickens is commonly contaminated with 
Campylobacter, which may represent a source of some infections 
through cross-contamination. 

Strong seasonal changes in the extent of this contamination would 
have to exist for this factor to affect the disease epidemiology, and no 
evidence for these changes exists. 

Food handlers/hygiene (46–50) Infected food handlers might represent a source of infection in catering 
premises. 

Infections in food handlers probably are seasonal, reflecting the 
seasonality of Campylobacter in general, but they are probably not the 
driver for the overall seasonality. 

Food, stir-fried (2) Stir-fried food may be contaminated through inadequately cooking raw 
ingredients or cross-contamination. 

A seasonal change in the contamination of raw ingredients would need 
to exist to explain the epidemiology.  

Flies  Flies provide a biological explanation for the spring increase in 
Campylobacter cases through the increase in fly numbers. 
Campylobacter has been isolated from flies, and the low infectious 
dose required to cause human disease would make this route credible. 
Historical records link “summer diarrhea” to flies. 

Little hard evidence exists for this transmission route. 

Mains drinking water (28,51–60)  With mains water supplies, the relatively even distribution of seasonal 
changes in the distribution of Campylobacter cases suggests that any 
contamination of public supplies must be systemic (a generic problem 
with all supplies) or a much bigger regional difference in the incidence 
would be seen. Potential seasonal differences in water quality that 
could explain why treatment might not prevent sporadic Campylobacter 
infection through mains water (e.g., viable noncultivable Campylobacter 
in chlorine-resistant protozoa) are not supported by evidence. The rarity 
of outbreaks associated with public water supplies suggests that 
drinking water is not a substantial source of Campylobacter infection. 

Private drinking water 
supplies/untreated surface water, 
rain water, or well water 

(6,59;61–70) Waterborne infection associated with private water supplies can result 
in outbreaks of infection because many people drink the contaminated 
water (71). Campylobacter is the most common organism causing 
these outbreaks. A seasonal change in water quality could occur. 

Seasonal changes in water contamination should trigger outbreaks 
rather than a national increase in sporadic disease. The comparative 
rarity of outbreaks associated with private supplies suggests that this 
source does not substantially contribute to the total illness that is seen 
to change dramatically with the season. Given the influence of surface 
water on the microbiologic quality of private water supplies, we expect 
that the seasonal occurrence of Campylobacter might be more 
influenced by rainfall than time of year, which does not appear to 
happen. 

Bottled water  In a case-case study of Campylobacter, people with C. coli infection 
were more likely to have drunk bottled water than were those with C. 
jejuni infection (72). Natural mineral water is not disinfected and could 
be a widely dispersed product that experiences seasonal changes in 
contamination. 

Sources of water that are used to produce natural mineral water and 
other bottled waters are relatively well protected. These groundwaters 
are unlikely to be contaminated with Campylobacter. If bottled water 
consumption is a risk factor, it should come up as such in analytic 
epidemiologic studies of Campylobacter infection. It is unclear why the 
seasonal pattern of infection should be so constant both geographically 
and annually if bottled water contamination is such a substantial 
contributor to human disease.  

Pools, lakes, and streams  Potential exists for illness after swallowing contaminated recreational 
water (73–76). Water sports in natural waters can be a source of 
exposure. If the contamination of water with Campylobacter is 
seasonal, then any seasonality in this group could be linked to either 
changes in water quality or behavior. 

Illness associated with recreational water activity has not been 
established, and this is unlikely to be the source of the spring increase 
in campylobacteriosis. Little evidence shows that the change in 
recreational water activity in the spring is enough to explain the 
seasonal change in Campylobacter cases. 



Risk factor Outbreaks Evidence for factor causing seasonal increase Evidence against factor causing seasonal increase 

Within-family transmission (77) Person-to-person transmission can occur. No obvious reason explains why within-household transmission of 
Campylobacter should be seasonal, given that personal hygiene 
practices are not likely to change substantially over a matter of weeks. 

Domestic catering  Domestic food preparation may contribute to human Campylobacter 
disease. 

Fly transmission within kitchens may contribute to transmission, and 
this would likely be seasonal. Little else within the kitchen environment, 
other than the contamination of raw food ingredients, is likely to vary 
seasonally. 

Nursery/childcare/school  

 

 

(78,79) As Campylobacter is common in children, transmission may occur 
within the childcare setting. 

No evidence shows that infections in childcare are common or that they 
vary through the year.  

Nosocomial transmission (80)  Nosocomial transmission cannot account for the national seasonal 
increase in cases. 

Pets  Pets, particularly kittens and puppies, have been postulated as a 
source of Campylobacter. Canine births, as recorded in Kennel Club 
and Guide Dogs for the Blind Association records, show a strong 
seasonal distribution, and this factor has been proposed as a driver for 
human disease (81). 

Little evidence shows that the seasonal change in Campylobacter is 
directly related to pets, although fly transmission from animal feces may 
be important. 

Farm animals (82) Campylobacter strains isolated from cattle have been linked to strains 
from human infections (83,84). Cattle and sheep represent a reservoir 
of Campylobacter (85,86), and milkborne outbreaks (6,23,26,29,33–
36) suggest that other routes may occur. Fecal shedding by sheep 
may be more frequent around lambing (87). Seasonal differences in 
Campylobacter infections have also been demonstrated in rhesus 
monkeys, other agricultural animals, and birds (15,16,88–91). 

Any seasonality of Campylobacter infection or colonization in animals 
could cause seasonality in humans, but this seasonality is most likely to 
result from the contamination of food. Fly transmission from animal 
feces may be important. 

Farm visits (92) Visits to farms can expose children to common zoonotic enteric 
pathogens, including Campylobacter. 

Any seasonality of farm visits is unlikely to contribute to the seasonal 
distribution of all cases. 

The countryside  Direct environmental exposure could occur through walking in the 
country. 

This activity may be seasonal but is unlikely to contribute to the strong 
seasonal distribution of cases. 

Travel  Campylobacter has been linked to overseas travel (93–95), including 
military service (96,97), and probably represents a significant 
percentage of all cases of travelers’ diarrhea (98–101). In some 
countries, >50% of Campylobacter cases may be linked to foreign 
travel (102) 

The seasonality of Campylobacter does not follow the seasonality of 
travel abroad. 

Weather/climate  In some developing countries a higher incidence was seen in the rainy 
season (103,104), which suggests flies might be contributory. Although 
Campylobacter is more common during the summer months and has 
been linked to temperature (105), no direct relationship was seen 
between temperature and cases of human disease. The different 
seasonal distribution in different countries appears to be partly 
temperature-related 

Little evidence shows that Campylobacter is associated with rainfall. 
There was no association between thermophilic Campylobacter in 
lambs at slaughter and rainfall (89). The main seasonal driver for 
Campylobacter infection is not likely to be rainfall itself, since the 
increase appears to occur annually, irrespective of when most rain falls. 

Immunologic response  The immunologic response to Campylobacter exposure could change 
throughout the year. This hypothesis has been studied in male rhesus 
monkeys (88). A marked seasonality was seen ,with the frequency of 
TH1-type cytokine synthesis in the summer being markedly greater 

Current evidence suggests that seasonal changes in immunologic 
response to Campylobacter infection are unlikely to account for the 
major seasonal changes in Campylobacter incidence. 



Risk factor Outbreaks Evidence for factor causing seasonal increase Evidence against factor causing seasonal increase 

than in the winter, whereas TH2-type cytokine expression did not vary 
between the seasons. 
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